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Threat modeling
Four questions

1. What are we building?

2. What can go wrong?

3. What are we going to do about it?
4

. Did we do a good enough job?
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Threat modeling _HIﬂllﬂE

What can go wrong? External Entity  x
Process X X X X X X
User Third Party
__1_1 1 l Data Flow X X X

Data Store X X X
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Threat modeling

What can go wrong?

External Entity x

Process X X X X X X
Data Flow X X X
Data Store X X X

User can be spoofed

User can repudiate actions
P1 can be spoofed

P1 can be tampered with
P1 can repudiate actions
P1 can disclose information
P1 can be disrupted
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Numerous LLM-based threat modeling tools

» STRIDE-GPT github.com/mrwadams/stride-gpt
> PILLAR pillar-ptm.streamlit.app/
» TaaC-Al httpS github.com/yevh/TaaC-Al

v

IriusRisk “Jeff: Al Assistant” https://www.iriusrisk.com/ai-threat-modeling
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Why bother?
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Why bother? EEENOOONOE

Traditional tool support External Entity ~ x
Process X X X X X X
— Data Flow X X X
Data Store X X X

User can be spoofed
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Why bother?
LLM-based tool support

User Third Party

Spoofing : An attacker uses a high-quality
photograph or video of the legitimate user to

- bypass the facial recognition during
authentication, giving them unauthorized
access to the user's device and data.
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Evaluations mostly based on precision and recall
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What makes a threat description useful?
ChatGPT

» Threat: “Feature vector theft: Malware or an attacker

extracts stored feature vectors”

> Mitigation advice: “Encrypt feature vectors using a secure

enclave or trusted execution environment.”
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What makes a threat description useful?
STRIDE-GPT

»  “While not a raw image, the feature vector could be reverse-

engineered or used in conjunction with other data to identify

the user.”

» “Compromise of user identity and potential privacy violations.
Attackers could potentially train their own spoofing models

using the exposed feature vectors.”

21 DistriN=t



Mindlessly repeating common security knowledge
ChatGPT

» Threat: “Brute Force Attacks: Attackers repeatedly try
different feature vectors” classified as an “Authentication

Bypass Attack”

» Mitigation advice: rate limiting and lockout mechanisms
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Mindlessly repeating common security knowledge
STRIDE-GPT

» Threat: “log all successful and failed authentication attempts,

including timestamps, IP addresses, and device information”
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Characteristics of a useful threat description

» Actionable: pinpoints the design flaw and proposes

mitigations

» Motivatied: argues why the threat matters (risk, likelihood

and impact)

» Instantiated: description is tailored to the system at hand
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Going forward

» Perceived usefulness

» What makes users perceive threat modeling output as useful?

> What prompt leads to the most useful output?
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