

Towards Golden Standards for Quantifying Privacy of Synthetic Tabular Data

Qianying Liao, Dimitri Van Landuyt, Wouter Joosen

Data Publishing

How about sharing privacypreserved data?

← Tension force →

need the data.

No, because of privacy

Idea

Data

What is Generative Model?

- > Discriminative Model p(y|x)
- > Generative Model p(x, y)

De-identified vs. Synthetic Data

De-identified data

Real data with PII removed/data
fields scrambled...

Synthetic Data

Data created

from a model

Agent-based Simulation

Multivariate Statistical Methods

Is de-identification the silver bullet?

ID	Age	Zipcode	Diagnosis
1	28	13053	Heart Disease
2	29	13068	Heart Disease
3	21	13068	Viral Infection
4	23	13053	Viral Infection
5	50	14853	Cancer
6	55	14853	Heart Disease
7	47	14850	Viral Infection
8	49	14850	Viral Infection
9	31	13053	Cancer
10	37	13053	Cancer
11	36	13222	Cancer
12	35	13068	Cancer

ID	Age	Zipcode	Diagnosis
1	[20-30]	130**	Heart Disease
2	[20-30]	130**	Heart Disease
3	[20-30]	130**	Viral Infection
4	[20-30]	130**	Viral Infection
5	[40-60]	148**	Cancer
6	[40-60]	148**	Heart Disease
7	[40-60]	148**	Viral Infection
8	[40-60]	148**	Viral Infection
9	[30-40]	13***	Cancer
10	[30-40]	13***	Cancer
11	[30-40]	13***	Cancer
12	[30-40]	13***	Cancer

De-identified data is not the way - Dwork

"The arms race of re-identification and de-identification" - Bellovin et al

Is synthetic data generation the silver bullet?

"First-Glance" Similarity

Easy to be evaluated

Privacy Friendly

Flexible

ID	Age	Zipcode	Diagnosis
1	28	13053	Heart Disease
2	29	13068	Heart Disease
3	21	13068	Viral Infection
4	23	13053	Viral Infection
5	50	14853	Cancer
6	55	14853	Heart Disease
7	47	14850	Viral Infection
8	49	14850	Viral Infection
9	31	13053	Cancer
10	37	13053	Cancer
11	36	13222	Cancer
12	35	13068	Cancer

Give me 12 records!

14651 Cancer 55 16546 **Heart Disease** 16544 Viral Infection 30 16545 Cancer 16160 5 Cancer 14410 6 **Heart Disease** 14564 Cancer Synthetic Data Generation 8 14646 **Heart Disease** 38 16464 Viral Infection 36 19845 Cancer **Heart Disease** 16444 16545 Viral Infection

Diagnosis

ID Age Zipcode

Is synthetic data a really better alternative to de-identified data?

What are the gold standards for evaluating synthetic data?

Current State of Synthetic Tabular Data Evaluation

Research Methodology

Research Objectives

- RO1: Survey of Privacy Metrics
- RO2: Effectiveness and Efficiency of Privacy Metrics
- RO3: Cut-off Values for Privacy Metrics
- RO4: A Gold Standard for Privacy Assessment

Qianying Liao, Dimitri Van Landuyt, Wouter Joosen, 2025. Pick Your Enemy: Pick Your Enemy: A Survey on Privacy Threat Models of Synthetic Tabular Data

Qianying Liao, Dimitri Van Landuyt, Wouter Joosen, 2025. Pick Your Enemy: Pick Your Enemy: A Survey on Privacy Threat Models of Synthetic Tabular Data

Threat Models in Privacy Metrics

- No-Box: Black-box that only returns synthetic data with no specific prompts
- Real Black-Box: Black-box with conditional prompts
- Grey-Box: Model hyper-params
- White-Box: Model params

TABLE 2 Summary of the different threat models and attacker assumptions made in the studies (* refers to an evaluation framework).

Evaluation	External data	Original data	Model	Synthetic data	Studies
Non-adversarial Met- rics	No	Full	No-box	Full	[141],[103]*,[70]*,[97],[37],[115][138][136][137][100
Singling Out					
Basic	No	Full	No-Box	Full	[46]
Native	Prior Statis- tics	No	No	Full	[101][91]
Record Linkage Atta	ck				
Public-Public	$\mathcal{X}_1 & \mathcal{X}_2$	No	No	Full	[46]
Public-Synthetic	\mathcal{X}'	No	No-Box	Full	[101][25] [81]
Attribute Inference	Attack				
Basic	No	$\mathcal{R}^{[columns]}$	No-Box	Full	[103]* [55] [24] [115][58]*[101][86][46][56][48]
External	$\mathcal{X}^{[columns]}$	No	No-Box	Full	[117][116][97]
Enhanced	Prior Statis- tics	$\mathcal{R}^{[columns]}$	No-Box	Full	[4]
Membership Inferer	ice Attack				
Basic	No	$\mathcal{R}_{[rows]}$	No-Box	Full	[115] [24] [106]
External	X	No	No-Box	Full	[103]* [123][58]*[101][86][48][77][102][142]
Location Privacy	No	$\mathcal{R}^{[columns]}$	No-Box	Full	[102]
Shadow Model	X	No	Grey-Box	Full	[103]* [70][105][58]*[117][116][92][85][64]
Enhanced	No	$\mathcal{R}_{[rows]}$	Grey-Box	Full	[59]
GANS	No	No	Black-Box	Full	[91]

Research Objectives - Next Steps

Thank you.

qianying.liao@kuleuven.be

KULEUVEN

Relevant Literature on Privacy Evaluation

- Giomi, M., Boenisch, F., Wehmeyer, C., & Tasnádi, B. (2024). A unified framework for quantifying privacy risk in synthetic data, Proceedings of Privacy Enhancing Technologies Symposium.
- Lautrup, A. D., Hyrup, T., Zimek, A., & Schneider-Kamp, P. (2024). Systematic review of generative modelling tools and utility metrics for fully synthetic tabular data. *ACM Computing Surveys*, *57*(4), 1-38.

Seminal Synthetic Tabular Data Generation Approaches Dev of GenAl for Tabular Data

TVAE, CTGAN, 2019

CTAB-GAN, 2021

TabDDPM, 2023

TabTransformer, 2020

GOOGLE, 2022

TabSyn, 2024

GenAl-based synthetic data generation is an active area of research, with new generators featuring greater generative capabilities published every year.