
Benchmarking Practices in
LLM-driven Offensive Security

Andreas Happe, Juergen Cito
TU Wien, Vienna, Austria

https://arxiv.org/abs/2504.10112

https://arxiv.org/abs/2504.10112

Motivation for this Research: Using LLMs for Hacking

- “[..] the testing scenario employed in the paper is quite elementary”
- “The setup of the network [..] look very complicated”

- “[..] the metrics employed for evaluating the approach are quite basic and lack
comprehensiveness.”

- “Expanding the scope of metrics could also offer a clearer understanding of [..]”
- “A broader [..] set of evaluation criteria would provide a more accurate assessment

[..]”

Reviewed Publications

Recommendations for
Benchmark-Creators

0. Do we really need another Benchmark?

- Could an existing benchmark be reused?
- A single paper did this

1. Technology Choices

“Evaluate technology choices esp. for safety and security implications”

- Our Action-Space is potentially destructive
- Virtual Machines provide better security boundaries

- Virtual Machines can be used for both windows/linux target systems

2. Benchmark Composition

“Ground the benchmark in reality and
provide information about included vulnerabilities.”

- Provenance of Test-Cases
- Based upon, e.g., Top 10 List of Vulnerabilities
- Often based on existing CTF challenges
- Median: ~15 high-level test-cases

- Document/Release the Test-Cases to make them Reproducible
- 72% of papers released their benchmark
- 11% of papers did not provide enough information to reproduce

3. Practitioners’ Work &
 Clean Test-Cases vs. Messy Life

“Consider your audience and create relevant test-cases”

- Construct Validity
- Current discussion if synthetic benchmarks are well-suited for security capability evaluations
- Emulate real-life problems
- Cyber-Security Benchmark vs. Pentesting Benchmark

- Clean Test-Cases vs. Messy Life
- Test-Cases: separate test-cases, deterministic and reproducible
- Messy-Life: target network with multiple attack paths, side-effects, not full deterministic

Example: Autonomous Enterprise-Network Attack

Network
Sniffing

Hash-
Cracking

Next
Attack

Network
Sniffing

Hash-
Cracking

Next
Attack

LLM LLM LLM

Reproducible Testcases Realistic Testcase

LLM

Server

Client

4. Tracking Sub-Tasks

“Use Sub-Tasks for fine-grained analysis and
allow for automated task completion detection”

- Realistic multi-step tasks
- Problem: how to deal with parallel tasks in realistic test-beds
- Problem: how to deal with non-deterministic actions

- Measure Progress instead of Success

- How to track them (during Testbed-Use)?
- Human manual evaluation
- “Leading Questions”
- LLM-as-Judges

5. Training Data Contamination

“Randomize identifier and include Canaries”

- Testbeds will be contained in LLM Training Data

- Randomized identifiers prevent model overfitting
- Canaries allow detection of inclusion of testbeds in training data

6. Baselines

“Provide baselines derived from humans or automated tooling
(include configuration).”

- Baselines allow comparison of results
- Should be provided by the Benchmark-Maker or by the Benchmark-User
- Only 42% of papers provided a base-line

- Potential Baselines
- Human Penetration-Testers
- Traditional Security Tooling: Tool-Selection and Configuration is essential
- Using existing LLM-based prototypes

Recommendations for
Benchmark-Users

7. LLM-Selection

“Run at least one SotA LLM, one open-weight LLM, and, if feasible a SLM.
If feasible, use at least one OpenAI LLM to allow for comparison

State your LLM’s requirements and detail their configuration, e.g., temperature.”

- LLM selection can be problematic
- OpenAI can be expensive (esp. When reasoning is used)
- Open-Weight Models show problems with tool-calling
- Small-Language Models can be problematic

8. Experiment Design

“Run at least 5 samples
and set the limit of steps per sample to at least 32.

If provided, use baselines for comparison.”

- How many samples
- 5 is based on median sample rate within papers
- In principle: until saturation is reached

- When to Stop a Sample?
- Round-based, until success or limit is reached (32 was median)
- Time-based
- Not seen: Cost-based?

9. Metrics .. “Measure success rates, token utilization and occurred costs.
Overview executed commands and their errors.”

Area Paper Count Description

Success Rates 18/18 Binary success rates

6/18 Progress Rates

Cost Analysis 10/18 Costs in US$

5/18 Token Counts

Executed Commands 9/18 List Executed Commands

4/18 Command Classification

Invalid Commands 7/18 Discuss Invalid Commands

8/18 Error Classification

9. ..and Analysis

“Perform qualitative analysis of trajectories and include your methodology.”

- Quantitative Analysis: use the mentioned metrics

- Qualitative Analysis
- Thematic Analysis/Open Coding

- Typically: Highlight common patterns during successful exploitation
- Typically: Highlight problems/errors during execution

- If possible, use professional penetration-testers
- Please state your methodology!

Summary of Recommendations

Testbeds

Testbeds: Overview

- Creation and Provenance
- Self-made vs. using an existing testbed
- Provenance: based upon CVEs or Top 10 lists, often using existing CTF challenges
- Problem with Repeatability

- Released (13/18) vs. undisclosed testbeds
- missing documentation

- Target Systems
- Windows (4)/Linux (11)/Web (5)
- Typically single-target, 2 benchmarks emulated connected networks

- Sizing
- 1-200 high-level tasks (e.g. Challenges), median 15 high-level tasks
- 33% of testbeds utilized sub-tasks

On Matching Reality

- Important for Construct Validity
- Problem: Testbeds often do not match real-world systems/tasks

- Outside the Closed World
- LLM Cyber Evaluations Don't Capture Real-World Risk
- Understanding Hackers’ Work

- Mismatch between qualities desired for benchmarking and realistic testbeds

- Benchmark: set of test-cases, each of them atomic, deterministic and reproducible
- Real-Life Network: multiple parallel attack paths, attacks are indeterministic,

ordering is important, etc.

https://ieeexplore.ieee.org/document/5504793
https://arxiv.org/abs/2502.00072
https://arxiv.org/abs/2308.07057

Subtasks and their Tracking

- Subtasks split-up attacks into attack chains

- Problems
- Task must be separable into smaller sub-tasks
- There should be a singular attack path
- How to track progress?

- Progress Tracking
- Human qualitative analysis
- Using questions can be leading
- Using LLMs-as-Judges

Training Data Contamination

- If the testbed/benchmark is public,
it will be included in a LLM’s training set eventually

- Problem of overfitting

- Potential solutions:
- Make all identifiers (usernames, hostnames, password) parameterizable
- Include canaries to allow easy detection for inclusion in training sets

Experiment Design

Experiment Design: Overview

- 5 Testruns per evaluated model
- Testrun stops when

- Task successful completed
- Maximum number of steps reached (avg. 30) or max. Duration reached (10min - 2days)
- Didn’t see: cost-based cut-off

- Model Selection
- On average: 4 LLMs used

- Baselines
- Used by 44% of reviewed papers
- Humans (1), traditional security tooling (2), LLM-based alternatives (7)

Experiment Design: Captured Metrics

Area Paper Count Description

Success Rates 18/18 Binary success rates

6/18 Progress Rates

Cost Analysis 10/18 Costs in US$

5/18 Token Counts

Executed Commands 9/18 List Executed Commands

4/18 Command Classification

Invalid Commands 7/18 Discuss Invalid Commands

8/18 Error Classification

Experiment Design: Captured Metrics

Commonly used:

- 18/18: success rate in %
- 10/18: costs in US $
- 9/18: List of executed Commands

Less often used:

- 8/18: Error Classification
- 6/18: Progress Rates
- 5/18: Token Counts
- 4/18: Command Classification

Used Analysis Methods

Analysis: Overview

- Quantitative
- using the metrics mentioned before: success rates, costs, token-rates, command counts, error

counts, etc.

- Qualitative
- Anecdotal evidence of single errors
- Typically using Thematic Analysis

- identifying common attack trajectories
- identifying common error paths/cases

- Explicit methodology description is often missing

Recommendations

